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Abstract-In this short article, we have studied the controllability result of the Cauchy problem for fractional
differential equation with delay in Banach spaces using the theory of an analytic semigroups. We shall confine in
the Kuratowski measure of non-compactness and fixed point theorem. An example is also given to illustrate the

results.
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1. INTRODUCTION

In this paper, we prove controllability of the
Cauchy problem for fractional differential equations
with delay of the form:

‘D = Ax(t) + F(t,x) +Bu(t); te J =[0,T];

X(t) =¢(t); te J, :=[-b,0];

X (0) = x(t +0); 0 €[-b,0] and ¢ € C([-b,0], X).
Where b, T >0;D%,qe(0,1) is the Liouville-Caputo
fractional derivative of orderq. A'is the infinitesimal
generator of an analytic semigroup L(.) uniformly
bounded linear operator on X. F:JxJy;— Xis a
given function; the state function x(t) takes values in

A =(Jy, X)and the control u e L?(J,U)in a Banach
space of admissible control functions with U as a
Banach space. Let x, represents the history of the state

from —oupto the present time tand X belongs to
some abstract phase space 4. Also, X :Jy— X is
defined by x (6)=x(t+6);60cJyand ¢ Awhere
X is a Banach space with norm||.||. Bis a bounded

linear operator from U to X.

The theory of fractional differential equations have
been proved to be remarkable tool and effective in the
modelling of many situations in various fields of
engineering and disciplines such as chemistry,
physics, biology, control theory, image and signal
processing, biophysics, blood flow phenomena,
aerodynamics and so on. More details on fractional
differential calculus theory are available in the
monographs of Lakshmikanthan [19], Kilbas et al [18]
and Miller and Ross [26].

Controllability is a very important component of
many control systems, the controllability property
plays an essential role in several control problems and
both finite and infinite-dimensional spaces. In the past
few years, the theorems about controllability of

...... 1)

integrodifferential, differential, fractional differential
systems has been studied by Chalishajar and Acharya
([8], [15], [25], [29]) and reference therein.

In ([1], [2]) Acharya and Panchal has proved the
existence of the mild solutions for an impulsive
fractional differential inclusions involving the Caputo
derivative in Banach spaces and the controllability of
an impulsive fractional differential inclusions
involving the Caputo derivative using Sectorial
operator in Banach spaces.

The paper is organized as follows: In section 2, we
briefly present some basic notations and preliminaries.
In section 3, we establish sufficient conditions for
controllability of Cauchy problem for fractional
differential equation with delay. Finally, an example is
given to illustrate the results reported in section 4.

2. PRELIMINARIES

Throughout this paper, we consider (X,||.|[)as a
Banach space, C([a,b], X) denotes the space of the
continuous function from [a,b]to X with the norm

Il X llra,57= [max Ix@

Assume

Co (X) ={x(t); x(t) e C([-, T], X)and x(t) =0, —o <t <0}

with the norm
X = max || x(t
” ”Co(x) te[0T] ” ( ) ||

2.1. Definition [30]

The Liouville-Caputo derivative of order qfor a
function f e C*[0,0) can be written as

1 j £ Y(s)
-0 (t-9)°

‘Dif(t)= ds,t>0,0<qg<1
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Since A:D(A) c X — X is the infinitesimal
generator of an analytic semigroup L(t) of uniformly

bounded operator, there exists M >1such that
|| L(t) |l< M for all t>0. Moreover, L(t)is continuous

in the uniform operator topology for all t >0,
ie. lim||L(t+7)-L({t)[I=0, vt =0.
n—!

By [20], For x e X , we define two operators {s(t)}.,
and {y (t)}o by

DO(t)x = ]c.nq (V)L{t%)xdv
0

()X = q.[v,]q ()L({t)xdv,0 < q <1
0

o)== >y X D i,
n=1 :

v € (0,0),and 7, is a probability density functions
defined on (0, 0) and satisfies 7, (v) = 0for all
v € (0,00) and

T T 1
*([nq (v)dv =1, '([V”q (v)dv = T

Clearly, ||o@t) <M, ||'P@) |I< l, t>0.
I'(q)

2.2. Lemma [14]

d(t) and P(t) are strongly continuous on X fort>0.

2.3. Lemma [14]

d(t) and P(t) are norm-continuous on X fort>0.

2.4. Lemma

The linear operator

t
Wu = j (t—5)"y (t —5)Bu(s)ds
0

has an inverse operator W, which takes value in
L2(J, X)/ KerW and there exists two positive
constants M, and M such that

Bl M and [ W 1< Ms.

2.5. Definition
A function x e C([-w,T], X) satisfying the equation

¢(t)! te [—Cl), 0]

t
D()(0) + j (t—s) 0L (t—s) f (s, %, )ds
x(t) = 0

t
+ j (t—s)" ¥ (t—5)Bu(s)ds, t €[0,T]
0

is called a mild solution of the problem(1.1) and we
defined the control by

t
u)=w- xl—J-(t—s)q‘l‘I’(t—s)f(s,xs)ds}(t)
0
Also,
MM, M, T9
lu@® I 5[IIX1II+ Iq q} g
2.6. Definition

The Problem (1.1) is said to be controllable on the
interval J if for every initial function ¢ € A and

X, € X there exists a control u e L2(J, X) such that
the mild solution x(.) of (1.1) satisfies X(T) =¥ .

2.7. Lemma [17]

Supposeb >0, #>0and a(t) is a nonnegative
function locally integrable on 0 <t <T(T < +wx), and
suppose X(t) is nonnegative and locally integrable on
0<t<T with

t
X(t) = a(t) + bj (t—s)”Y[x(s) + Bu(s)]ds
0

on this interval, then we have that
t

S (BT (B)" np-1
x(t) <a(t) + ——==_(t-s)""[a(s)+ Bu(s)] |ds,
(25

0<t<T.

2.8. Definition:(Kuratowski measure of
noncompactness)

On each bounded subset D in the Banach space X ,
define
u(D) :=inf{d > 0; D canbe covered by a finite number of

setsof diameter < d}
Then, w(.) is called the Kuratowski measure of
noncompactness on D .
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Some basic properties of x(.) are given in the
following Lemma.

2.9. Lemma ([5], [22])

Let X be a Banach space with norm||.||and A,C < X

be bounded. Then

(1) u(A) =0iff Alis relatively compact;

(2) u(A) = p(A) = 1(coA), where coA is the closed

convex hull of A;

(3) u(A) < u(C) whenAcC;

(4) u(A+C) < u(A)+u(C);

(6) u(AUC) <max{u(A), u(C)};

(6) u(AO,r)) =2r,where A(O,r) ={x € X || x||< r}
if dim X =+o0.

2.10. Lemma ([16])

Let X be a Banach space, Q: X — X be a completely

continuous operator, if the set
A={x:xeX,x=40x,0< A1 <1}
is bounded. Then Q has a fixed point.

2.11. Lemma ([16])

Let X be a Banach space and T is an operator on X .
If there exists a positive integer nsuch that T"is a
contractive map, i.e., there exists a constant
C(0<C <D such that

IT"x=T"y[<ClIx=yll, ¥x, y € X,

then T"has a unique fixed point on X and it is also
the unique fixed pointof T .

Before we give the main theorems, we require the
following lemma.

2.12. Lemma
Leta,b >0, 8 >0.Suppose that x(t) is nonnegative
continuous functionon0 <t <T with

t
x(t) <a+ bj (t=5)""* max[x(z) + Bu(2)]ds

on this interval. Then

ng
X(t) <a+ Z(tir((,@;; 0<t<T
Write

z(t) = gzazi[x(s) + Bu(s)].

Proof:

Then z(t) is a non-decreasing nonnegative continuous
function on[0,T].

Given 0<t<T . Thenforanys,0<s<t,

x(s)<a+ bj(s —r)?tv(r)dr
<a+ bj r’ vt —r)dr

t
<a+b J' (t—s) v(s)ds
0
Hence,
t
v(s)<a+b j (t—s)/Lv(s)ds

By Lemma 2.7, we have

v(t)<a+[a+Bu]J‘[Z(bT(ﬂ)) (t—s)"’" 1}ds 0<t<T,

r(ng)
Therefore,
ng
v(t)<a+[a+ Bu]z (b;(f]?)) nTﬂ ,0<t<T.

3. MAIN RESULT:

In this section, we prove the controllability results for
the system (1.1). We assume that f is not necessarily

Lipschitz and A generate not only an analytic
semigroup but also generate a compact semigroup,
where X could be an infinite dimensional space.

3.1. Theorem

Let A be the infinitesimal generator of a compact
analytic semigroup of uniformly bounded linear
operator, and f : [0, T]xC([-®,0], X) = X is
continuous. If there are almost everywhere
nonnegative measurable functions |, (t), 1, (t) on[0,T]
such that

I ft ) <h®+LMO) [ @llwo
fora.e. t €[0,T],p € C([-w, 0], X) where

sup I(t—s)q 1I1(s)ds <o, I, (t) e L”([0,T]),
te[0.T1Y,

then for any ¢ € C([-w, 0], X) ,then problem (1.1) has

at least one mild solution on [-@,T].

Proof:
For every ¢ e C([-w,0]) we define

y(0) = g(t)(t [-@,0]), y(t) =D(t)$(0)(t=0).
By Lemma 2.2, we see that y(t) € C([-w,T], X).
Set
M, = sup j(t— $)* M (s)ds, My =1 L.,
te[0.T]g

M, = max s)||.
3= max [1y©)ll
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Let

x@®) =v(t)+y(t), te[-o,T],
Then it is obvious that x satisfies 2.1if and only if
Xo =0and fort [0, T],

t
X(t) = _[(t —s)q‘lgo(t —s)[f(s,vs +Y,)+Bu(s)lds
0

We consider the operator P : Cy(X) — Cy(X) as
follows:
0, te[-w,0]

(PX)(t) = j-(t —5) Tt —S)[ F (5,V, + )
+Bu(s)]ds, t €[0,T]

By using the Lebesgue dominant convergence
theorem, it is easy to prove that P : Cy(X) — Cy(X) is
continuous because f is continuous.
Set B, ={x;x € Cy(X),|| x ||c0(x)}’ r>0.
Next we will show that P is a compact operator on
B,.
Clearly, {(Px)(0): x € B, }is compact.
Forte(0,T] let 0<¢g <t, &, >0, xeB,.
Thus, we obtained

(Px)(t) =
t—g
J. (t-s)91 J. vy, WL(t = 8)9V)[ f (s,Vs + ys) + Bu(s)]dvds
0 0
t—g
I (t-s)d 1qu (VL((t —8)IV)[ f (5,Vs + ys) + Bu(s)]dvds

&2

t ©
+ j (t- s)q_lj. avy, (Lt - 8)AV)[ f (s,Vs + Ys) + Bu(s)]dvds

t—g &

t ©
+ j (t —s)q_lj W, (VL((t—s)IV)[ f (5, Vg + ys) + Bu(s)]dvds
t—g &
Since (&9%,) is compact, and the set

t—g

I (t-s)? 1qu (WLt =9)Iv—&%,)[ f (s, Vs +Ys)

&2
+ Bu(s)]dvds: x € B,
is bounded, we see that the set

t-g o
L(a'ey) [ (=97 [av, WLEE-9V=4"2)[f (5% +12)
0 &

+Bu(s)]dvds : x € B,
is relatively compact in X . Lemma 2.9(1) tells us that

t-g S
L) [ =9 [ v, (OL(E-9"V -5 (53 +¥.)
0 &

+Bu(s)]dvds : x € B,

=0

Moreover, it is clear that
t-g
I (t-s)9t J. avy, (VL((E - $)IV)[ f (s,Vs + ys) + Bu(s)]dvds
0 &
t—&
- L(e%) f (t-9)° 1qu L= =298, (5.5 + ys)
)
+ Bu(s)]dvds.
Thus, we get

t-¢ 0
[ =97 [av, MLE-9™WLF (v +,)
0 &

+Bu(s)]dvds : x € B,

on the other hand, it is easy to see that there exists a
positive constant C such that
t—e;
J' (t-s)9t I vy, (VL((t - $)IV)[ f (5,V5 + ys) + Bu(s)]dvds
0 0

=C j g (v)dv, Vx € By.

By Lemma 2.9(6), we have
j (t—s)" 1qu WLE-9"LT 5.V, +¥s)
+Bu(s)ldvds: x B,
< 20‘]z av,,, (V)dv.
o

This means that,

t-g
g-1
i j(t 5) qu (L= (5, +¥s) o
o +Bu(s)]dvds: x e B,
Similarly we can prove that
. j(t s)“qu VLAt (5.5 + )
) I‘IrE0 By =0,
+Bu(s)]dvds : x € B,
q-1
‘I_imoy IJ;(t S) J.qv (VL(t-s) W)[f(s,Vg +Vs) 0.
V +Bu(s)Jdvds : x € B,
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By Lemma 2.9(4), we obtain

t &
[ =97 [av, (OLE-9WLT(5v,+y,)
# 0 0

+Bu(s)]dvds : x € B,

t-g

<u I(t_s)qiquV”

L WLt =3)" ) F (s,v; +5)
0 0

+Bu(s)Jdvds : x € B,

t &
[ €97 fav, (L(E-9MIF (e +12)

tH t-g 0
+Bu(s)]dvds: x € B,

t-g

j (t-9" 1[% (IL(E-9™WLF (s.vs +5)
+p

+ Bu(s)Jdvds : x € B,

t 0
[ €9 [ v, L= (v + )

t-g

+

+Bu(s)Jdvds : x € B,

Letting &, —0", we get

t 0
! C —s)qfllqv% WLE-"WIF v +ye) ||

+ Bu(s)]dvds: x € B,

Consequently, we see that {(Px)(t): x € B, }is
relatively compact in X for all t [0, T].
Clearly, for t €[0,T),

I (Px)(t) = (Px)(O) |
t
srﬂql(t—s)q-l Il £ (5,v, + y.) +Bus) | ds.

Thus, for 0 <t <t, <T,we obtain,
I (PX)() = (PX)(O) |

t
=1 =97 p =9I F (v + y) + Bu(s)lds
0

4
~[ (=9 =9I (5.1, + y5) + Bu(s)lds
0

t
< j(tz =8)" Iyt~ )~y (t ) I ILF (.5 + ys) + Bu(S)] I ds
0

4

+I[(t2 =9)T = (=) Iy (= S) LT (s,vs + Y5) +Bu(s)] [l ds
0

t

+I[(t2 =)yt =) IILF (5,vs + Y5) + Bu(s)] [ ds.

4
This, together with Lemma 2.3, implies that P(B,) is
equicontinuous on [0,T]. Obviously P(B,) is bounded
in Cy(X). By the Arzela- Ascoli theorem, we know

that P is a compact operator. Hence, P is completely
continuous in Cy(X).

Set A ={I;xeCy(X),I =APx,0< A <1}. Take l € A.
Then for each t €[0,T],

t
I(t) = zj (t—8) Ly (t—s)f (s, v, +y,)ds.
0

Thus,
||I(t)||< J-(t S)Q 1M2(t S){["Vs" wo]*llysll[wo]}
+[Bfllu)}as
iy 10 I (-9 s s
¢ Tq Tq
MM,M3 TY
L MMaMs 17w
Ty g 4
Suppose,
_ MMy | MMMg T MMM3 T8 ) -, MM
g Trq gt g%

Then
t

1) I C1+C2j(t—s)q_l max [|x(2)ds.
0 0<T<s
By Lemma 2.12, we have

nﬁ

<o, 0<t<T.

Therefore, the set A is bounded.
By Lemma 2.10, we see that P has a fixed point I(t) .

Thus, x(t) = v(t)+ y(t) is the mild solution of the
problem (1.1) and x(T) = % which implies that the
system (1.1) is controllable on [0,T]. This completes
the proof of the theorem.

4. EXAMPLE:

Consider the following problem
Cpd = Aut)+ f(t,up), te[0,T],
u(t) = ¢(t), t e[-o,0]
Where X is a Banach space, q<(0,1),T, >0are

constants, A is the infinitesimal generator of an
analytical semigroup of uniformly bounded linear
operator on a Banach space X,

0
F(t.9) = ®% + ¢ O [ ¢(s)ds,
Xo € X is a fixed element, ¢;(t) (i=12)are
continuous functions on [0,T], and ¢ € C([-w,0], X).
So the problem has a unique mild solution.
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